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Abstract
A hyperelasticity for granular medium is proposed in this study, considering the inherent and stress-induced anisotropy.

The nonlinear elastic behavior is described by defining an elastic potential energy model in terms of the elastic strain

invariants that are coupled with a fabric tensor accounting for the transverse isotropy of granular solids formed under

gravity. Such an approach provides a unified consideration on the stress-induced and inherent anisotropic behavior of the

nonlinear elasticity and its stability. The six independent constants of the elastic modulus tensor of granular medium

consolidated under different stress levels and consolidation stress ratios are well predicted using the granular hyperelas-

ticity. Furthermore, the proposed anisotropic model of elastic potential results in a state region within which the ther-

modynamic stability is broken and thus naturally enables the predictions of the mechanically instable behavior of

transversely anisotropic granular solids. From such a thermodynamic perspective, the state boundary of granular medium

corresponds to the states at which the positive definiteness of the Hessian matrix of the elastic potential density function is

violated and is used to define the strength criterion. Therefore, the proposed granular hyperelasticity in this study provided

a generalized approach predicting the nonlinear elasticity and strength criterion of granular medium.
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1 Introduction

Although had been studied widely from both experimental

and numerical perspectives, the understanding of the

mechanical behavior of granular materials remains chal-

lenging for researchers in the fields of geotechnical engi-

neering. For example, even under static states, the static

stress distribution is still a topic of some debate for gran-

ular solids [12, 16]. The elastic and plastic behavior of

granular solids like sands is heavily dependent on many

factors such as the stress state, the porosity and the soil

fabric [21, 22, 30]. Especially, the stiffness and strength of

granular soils with heterogeneous stress distributions in

engineering fields (e.g., foundations and slopes)

significantly vary with both the principal stress direction

and the inherent anisotropy of soil. DEM simulations for

granular materials also show significant evolutions of soil

fabric and force chain networks along the imposed stress

paths [20]. Therefore, a state- and fabric-dependent con-

stitutive model for granular soils, considering the above-

mentioned granular solid behavior, is required for the

reasonable predictions of mechanical problems in

geotechnical engineering. Anisotropic constitutive rela-

tions for sands or clays are usually developed based on

extensions to existing models in order to taking into

account the effect of anisotropy on the elasto–viscoplastic

behavior of soils [1, 5, 11, 23]. In these models, the

inherent anisotropy is usually described by the concept of

soil fabric tensor. Anisotropic models based on microme-

chanics considering microstructure and thermodynamics

are also studied recently [3, 29], which shows remarkable

effects of inherent anisotropy on the cyclic and instability

behavior of granular solids.

In most exiting models, the elastic behavior and the

strength criterion are in fact usually considered as two

independent aspects of soil behavior and thus are sepa-

rately described by almost different approaches. However,
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from the mechanical and physical perspectives, it can be

found that both the elastic stiffness and strength of granular

soils are associated with a unified nonlinear elastic regime

with a conditional stability of the stress states, which

provides an alternative approach giving an insight into the

physical mechanisms underlying the granular soil behavior

and coupling the state- and fabric-dependent properties of

elastic stiffness and strength criterion with each other. A

physically reasonable approach accounting for such an

elastic regime is the hyperelasticity in which the elastic

constitutive relation is derived from an appropriate scalar

elastic potential energy or free energy [4, 10, 13, 16]. Such

an approach had been studied widely and was also coupled

with the plastic behavior of granular solids [15, 27]. The

state-dependent behavior as well as the physical meanings

behind the elastic stability behavior can be well accounted

for within the hyperelastic framework. One of such

hyperelastic models for granular solids is the granular

elastic model [16], which takes into account the nonlinear

elastic stress–strain relation with a mechanically insta-

ble region in the static stress space. In this model, the free

energy F defined in their hyperelastic model has a func-

tional form as

F ¼ A eev
� �m

eev
� �2þn ees

� �2h i
ð1Þ

with two elastic constants, A (units of stress) and n (di-

mensionless). eev and ees are, respectively, the first and sec-

ond invariants of the elastic strain tensor eeij, defined as

eev ¼ eekk; ees ¼
ffiffiffiffiffiffiffiffiffi
eeije

e
ij

q
ð2Þ

where eeij ¼ eeij � eevdij=3 is the deviatoric elastic strain

tensor. Here, eev is also the volumetric elastic strain.

Equation (1) gives power law functions of elastic moduli

that vary with the mean stress and vanish under stress-free

states, and it is just consistent with ‘‘Hertz contacts’’ theory

when taking the parameter m = 1/2 [7]. Other hyperelastic

models had also been proposed by different researches,

e.g., the model proposed by Einav and Puzrin [9] and the

model by Houlsby [14]. The granular elasticity was also

extended to the cohesive materials like silty soils and clays

[26, 28].

However, the anisotropy behavior of granular solids,

another important aspect of the granular elastic regime that

should be coupled with the elastic behavior introduced

above, has not been adequately discussed under the phys-

ical framework of granular elasticity. In fact, all natural or

man-made soil structures, formed under a gravitational

field, are transversely isotropic on the bedding plane, with

an anisotropic soil fabric [2, 24]. All the mechanical fea-

tures of soil behavior, including the static, dynamics or

quasi-static behavior, could be affected by such inherent

anisotropic soil structures. Furthermore, even for the

granular materials with an isotropic structure, the so-called

stress-induced anisotropy can also be induced by the

shearing loads [30]. The objective of this work is to pro-

pose a granular hyperelasticity taking both the inherent and

stress-induced anisotropy into account. A fabric tensor is

incorporated into the free energy function of granular solid

to quantify the effects of anisotropy on the elastic moduli,

the stress–strain relation and the elastic stability. Conse-

quently, the granular free energy is decomposed into a

standard isotropic formula and an anisotropic contribution.

A more generalized granular elasticity can be then devel-

oped, allowing more accurate interpretations and predic-

tions of the granular elastic behavior, which should be also

an important basis of the further studies on granular plas-

ticity. In contrast to other existing nonlinear elastic models

developed within the framework of Cauchy elasticity (e.g.,

the Duncan–Chang model [8]), the approach proposed in

this paper describes the state-dependent stress-induced and

inherent anisotropy of granular elasticity within a unified

energy-based framework in which the thermodynamic laws

can always be guaranteed and the anisotropic elastic

instability of granular solids can be theoretically deter-

mined from the perspective of thermodynamic stability. It

has been also shown that such an approach has advantages

in giving more comprehensive predictions of granular

elastic behavior, comparing with other existing hyperelas-

tic models [25].

2 Theory development

2.1 Fabric tensor of granular solids

The fabric tensor is a concept broadly defined to describe

the fabric intensity and orientation of various solids and to

relate their macroscopic anisotropy behavior to the

microstructures [18, 19, 24]. From the perspective of

continuum mechanics and thermodynamics, the effects of

inherent anisotropy in granular medium on the stored

elastic potential or free energy should depend on such a

fabric tensor. In this study, the fabric tensor, represented in

the form of second-order symmetric tensor and associated

with the orientation distribution of particle contacts [11],

will be incorporated into the free energy function of

granular solids. Such a kind of fabric descriptor could

evolve remarkably toward coaxiality with the stress tensor,

following with the so-called stress-induced anisotropy. In

this section, only the inherent fabric tensor is discussed and

the stress-induced anisotropy will be considered in Sect. 3.

In a representative volume of granular media, denoting the
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unit normal vector of the ath particle contact plane as uai ,

the fabric tensor Fij can be then defined as [11]

Fij ¼
3

N

XN

a¼1

uai u
a
j ð3Þ

where N is the particle contact number in the representative

volume and the subscript a here is not a dummy index.

Obviously, the trace of Fij equals 3, i.e., Fkk ¼ 3.

Commonly formed by a natural deposition process

under gravity, the granular medium can be referred to as

transversely isotropic materials. At this case, the fabric

tensor can have the following simplified matrix form with

an inherent anisotropy parameter a:

Fij

� �
¼

1þ a 0 0

0 1� a

2
0

0 0 1� a

2

2

664

3

775 ð4Þ

Equation (4) is defined in a coordinate system as shown

in Fig. 1, in which the ‘‘1’’ is the vertical axis of gravity

and the ‘‘2’’ and ‘‘3’’ are the two orthotropic axes on the

bedding plane. These three axes constitute the axes of

anisotropy. It should be noted that Fij

� �
can also be rede-

fined with more than one anisotropy parameter in order to

describe more generalized anisotropy properties of solids,

while only the transverse isotropy is considered in this

study. Although the parameter a can have a microme-

chanical definition, its value can be determined according

to the macroscopic observations on its effects on the

mechanical properties, e.g., the elastic modulus.

Once the fabric tensor is defined, the orientation distri-

bution of the particle contacts as well as the elastic mod-

ulus can be quantified by a distribution function

q /; bð Þ ¼ Fijninj, where n ¼ cos/; sin/cosb; sin/sinbf g
is the unit direction vector by means of Eulerian angles

/ 2 0; 2p½ � and b 2 0; 2p½ � in the local coordinate at

interparticle contact as shown in Fig. 1. From Eq. (4), q is

independent on b for the case of transverse isotropy. This

reads

q /ð Þ ¼ 1þ a

4
3cos2/þ 1ð Þ ð5Þ

Obviously, the parameters a determine the extent of the

anisotropy of granular medium. Figure 1 shows the orien-

tation distribution function defined by Eq. (5) in spherical

coordinate. It is obvious that the isotropy just corresponds

to the case when a = 0. The increase in a leads to a peanut-

shaped distribution figuration of the particle contacts,

which means more particles contacts and thus larger elastic

modulus in the vertical direction. Therefore, using the

definition of fabric tensor, the effects of inherent anisotropy

on the hyperelasticity of granular medium can be descri-

bed, as will be discussed below.

2.2 Free energy of anisotropic granular medium

It is assumed here that the free energy of granular medium

can be split into different contributions from the isotropy,

the stress-induced anisotropy and the inherent anisotropy.

The free energy of completely isotropic granular medium

had been shown in Eq. (1). Similarly, the granular free

energy considering inherent and stress-induced anisotropy

can be defined as a function of the invariants of the con-

traction of the elastic strain tensor and the fabric tensor. As

a result, the free energy function will be divided into a pure

isotropic part Fiso, a stress-induced anisotropic part Fsa and

an inherent anisotropic part Fia, i.e.,

F ¼ Fiso þ Fsa þ Fia ð6Þ

where Fiso is just the free energy function defined in Eq. (1)

and therefore

Fiso ¼ A eev
� �m

eev
� �2þn ees

� �2h i
ð7Þ

On the other hand, the contribution of stress-induced

anisotropy to the free energy depends on the third invariant

of the elastic strain, denoted as eet , which results in a stress-

path-sensitive free energy or elastic properties. If without

the effects of inherent anisotropy, Fiso together with Fsa

describes the granular elasticity with initial isotropy. Due

to the reasons that will be clear in Sect. 3, we define

Fsa ¼ A eev
� �m

f
eet
� �5

ees
� �3 ; eet ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eeije

e
jke

e
ki

3

q
ð8Þ

where f is a dimensionless constant quantify the effect of

stress-induced anisotropy.

The contribution of inherent anisotropy to the free

energy, Fia, must be related to both the elastic strain tensor

and the fabric tensor. Noting that the fabric tensor in

Eq. (4) is defined in the orthogonal coordinate systemFig. 1 Schematic plot of orientation distribution of inherent aniso-

tropy of particle contact
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constituted by the axes of anisotropy, a more generalized

fabric tensor considering the rotation of coordinate axes

should be used here. Without loss of generality, the axis

‘‘2’’ in Fig. 1 is fixed, while the other two axes rotate an

angle of h around the axis ‘‘2’’. The fabric tensor in the new
coordinate system, denoted as Sij, can be then specified as

Sij
� �

¼ L½ � Fij

� �
L½ �T ð9aÞ

L½ � ¼
cosh 0 sinh
0 1 0

sinh 0 cosh

2

4

3

5 ð9bÞ

In order to consider the effects of inherent anisotropy on

the granular hyperelasticity, a fabric-related elastic strain

tensor, denoted as Eij, is then defined as follows:

Eij ¼
1

2
eeikSkj þ Sike

e
kj

� �
ð10Þ

Then, Fia can be defined as a function of the invariants

of Eij similar to the definition of Fiso. This reads

Fia ¼ B eev
� �m

Ee
v

� �2þn2 Ee
s

� �2h i
ð11aÞ

Ee
v ¼ Ee

kk; Ee
s ¼

ffiffiffiffiffiffiffiffiffi
�eij�

e
ij

q
ð11bÞ

where Ee
v and Ee

s are the first and second invariants of Eij, B

is a material constant with stress dimension and

�eij ¼ Ee
ij � Ee

vdij=3. Noting that Eq. (11a) can be reduced to

the isotropic model when taking a = 0, the inherent ani-

sotropic free energy described in Eqs. (11a, 11b) is coupled

with the isotropic free energy. It is obvious that such a free

energy function defined using the fabric-related elastic

strain can naturally couple the inherent anisotropy with the

conditionally stable nonlinear hyperelasticity of granular

solids (see below). Therefore, the elastic behavior of the

granular medium in reality can be better reproduced by the

model.

The effects of anisotropy on the elastic behavior of

granular solids can be studied by free energy isolines in the

principal elastic strain space where the coordinate axes

1 * 3 are exactly the anisotropy axes shown in Fig. 1. ee11,
ee22 and ee33 are the three corresponding principal elastic

strains. Defining b ¼ ee22 � ee33
� �

= ee11 � ee33
� �

as the coeffi-

cient of intermediate principal elastic strain and neglecting

the stress-induced anisotropy (i.e., f ¼ 0), Fig. 1 shows the

isolines of free energy, determined by Eqs. (6–8 and 11a,

11b), in the ee11 � ee33 space. It is obvious that the free

energy isolines are bounded by the state line eev ¼ 0 (or

F = 0), which indicates the fact that any tensile strain or

stress states are impossible for granular medium. For the

isotropic cases (Fig. 1a, c), the free energy isolines are

relatively uniformly distributed and are symmetric with

respect to a line perpendicular to the line eev ¼ 0. Moreover,

the inherent anisotropy results in the significantly asym-

metric free energy isolines in the ee1 � ee3 space, indicating

the anisotropic elastic moduli of granular medium. More-

over, it will be clear below that a stable elastic region

(SER) and an instable elastic region (IER) can be recog-

nized in Fig. 2 according to the convexity of the free

energy isolines, which is also affected by the inherent

anisotropy. Similar conclusions can be made for the free

energy considering the stress-induced anisotropy. Here,

SER and IER are defined as the state regions in which the

stability of thermodynamic equilibrium is guaranteed and

broken (see Sect. 3.2), respectively.

2.3 Granular hyperelastic relationship

Once the free energy function is defined, the relationship

between the stress and the (anisotropy-related) elastic

strain can be determined according to the hyperelastic state

relation,

rij ¼
oF

oeeij
ð12Þ

Substituting Eqs. (6–8 and 11a, 11b) into Eq. (12)

results in

rij ¼ r 0ð Þ
ij þ r iað Þ

ij ð13Þ

Fig. 2 Isolines of free energy of granular medium in the ee1 � ee3
space: A ¼ 0:8GPa, B ¼ 8GPa, n ¼ 0:5, n2 ¼ 4 and m ¼ 0:5
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r 0ð Þ
ij ¼ A eev

� �m�1
mþ 2ð Þ eev

� �2þnm ees
� �2þfm

eet
� �5

ees
� �3

" #

dij

þ 2A eev
� �m

n� 3

2
f

eet
� �5

ees
� �5

" #

eeij

þ 5

3
A eev
� �m

f
eet
� �2

ees
� �3 3eeike

e
kj � ees

� �2
dij

h i

ð14Þ

r iað Þ
ij ¼ Bm eev

� �m�1
Ee
v

� �2þn2 Ee
s

� �2h i
dij

þ 2B eev
� �m

Ee
vSij þ 2Bn2 eev

� �m

Ee
inSjn þ Ee

jnSin

� �
=2� Ee

vSij=3
h i

ð15Þ

where r 0ð Þ
ij and r iað Þ

ij are the stress parts corresponding to the

isotropy/stress-induced anisotropy and to the inherent ani-

sotropy, respectively.

Then, the hyperelastic properties of granular medium,

such as the pressure-dependent stress–strain relation and

the elastic stability, can be determined by Eq. (15) and

coupled with the anisotropy. Detailed discussion will be

made in Sect. 3.

3 Discussion on granular elasticity
with anisotropy

For granular solids, the elasticity should be state depen-

dent, and a mechanically instable state region should be

accounted for in order to interpret the yielding or plastic

flowing behavior of granular medium. In this section, the

effects of inherent and stress-induced anisotropy on the

elastic behavior of granular medium are analyzed accord-

ing to the granular hyperelasticity developed above.

3.1 Effects of anisotropy on elastic moduli

The anisotropy of granular medium can be checked by

analyzing its effects on the elastic moduli and thus on the

elastic stress–strain relationship. We first study the fol-

lowing two simple cases.

Case (1) The stresses induced by isotropic elastic strain-

ing, i.e., the elastic strain tensor, is diagonal with the three

principle elastic strains ee11 ¼ ee22 ¼ ee33 ¼ ee. In this case,

ees ¼ eet ¼ 0 and thus, the stress-induced anisotropy disap-

pears (see Eq. (8)). However, the inherent anisotropy leads

to the three anisotropic principal stresses. Taking h ¼ 0�

(Eq. 9b) and a 6¼ 0, r11 6¼ r22 ¼ r33, as shown in Fig. 3. A

larger value of parameter a corresponds to a more signifi-

cant inherent anisotropy, which can be interpreted by the

variation of r33=r11 with a in Fig. 3.

Case (2) The triaxial straining with a constant strain Lode

angle w is defined as cos3w ¼
ffiffiffi
6

p
eet
� �3

= ees
� �3

, only con-

sidering the stress-induced anisotropy (take B = 0). The

coefficient of intermediate principal elastic strain, b, can

also be expressed as a function of w,

2b ¼
ffiffiffi
3

p
tan w� p

6

� �
þ 1. As two simple cases, w ¼ 0� for

the triaxial compression (b ¼ 0) and w ¼ 60� for the tri-

axial extension (b ¼ 1). From Eq. (14), the deviatoric

stress (or shear stress) r11 � r33 ¼ 2A eev
� �m

nþ½
cos 3wð Þ5=3� 6�5=6f� ee11 � ee33

� �
: Obviously, the shear mod-

ulus of granular solids subjected to triaxial compression

(ee11 � ee33 [ 0 and cos3w ¼ 1) is larger than that of gran-

ular solids subjected to triaxial extension (ee11 � ee33\0 and

cos3w ¼ �1), and the ratio of the former to the latter is

nþ 6�5=6fÞ= n� 6�5=6f
� �

[ 1. For the loading paths with

values of w varying form 0� to 60�, the shear modulus will

vary continuously. This is an important stress-induced

anisotropic behavior observed in sands, corresponding to

the elastic potential defined in Eq. (8). It will be clear that

such an elastic potential function also gives the stress-in-

duced anisotropic behavior of mechanical instability, from

the energy perspective.

More generally, taking both the inherent and stress-in-

duced anisotropy into account, the elastic behavior can be

described by the incremental stress–strain relation,

drij ¼ cijklde
e
kl; cijkl ¼

o2F

oeeijoe
e
kl

¼ orij
oeekl

ð16a� bÞ

where cijkl is just the tangent elastic modulus tensor. The

expression of cijkl with regard to the (anisotropy-related)

elastic strain can be derived by substituting Eqs. (13)–(15)

into Eq. (16b) and is not presented here. Since the

Fig. 3 Stress–strain relations of granular medium subjected to elastic

isotropic straining (The parameters used are the same as those used in

Fig. 2)
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anisotropy is considered, the parameter identification

becomes undirect, which needs optimization-based inverse

analysis from practical point of view [17]. Here, the

parameters involved include the two stress-dimensional

constants A and B, the two shear modulus coefficient n and

n2, the stress-induced anisotropy parameter f, the inherent

anisotropy parameter a and the nonlinearity-related power

m. From Eqs. (13)–(15), the elastic modulus of sands has a

power functional relationship with the mean stress p with

an approximate power of m= mþ 1ð Þ, which can be used to

determine the value of m. The value of a can be approxi-

mately determined by the ratio between the horizontal and

vertical compressive moduli which depend on the contact

distribution in different directions (Eq. 15) and can be

estimated to be q 90�ð Þ=q 0�ð Þ ¼ 1� a=2ð Þ= 1þ að Þ.
Parameters A, B, n, n2 and f can be then optimized

according to the measured compressive and shear moduli

on different planes at a certain stress state.

The anisotropic elastic modulus tensor of Ticino river

sand (TS), a predominantly silica sand, had been measured

by a comprehensive series of laboratory seismic compres-

sion and shear wave propagation tests [2]. The tests were

carried out under different stress levels and consolidation

stress ratio, defined as K ¼ r0h=r
0
v where r0h and r0v are the

effective horizontal and vertical stresses, respectively. As a

transversely isotropic material formed under gravity, the

vertical direction is just the axis of symmetry and thus, the

coordinate system can be defined as the same as the one in

Fig. 1. Therefore, in Eq. (9b), h ¼ 0�. The compressive

and shear elastic moduli on different planes can be deter-

mined according to the measured wave velocity data.

Detailed information can be found in Bellotti (1996) [2].

The hyperelasticity developed here can well predict the

anisotropy observed in TS, which heavily depends on the

stress path and the stress state. The predicted results are

shown in Fig. 4, in which Mh ¼ C2222 ¼ C3333 and Mv ¼
C1111 are the horizontal and vertical compressive moduli,

respectively. Ghh ¼ C1212 is the shear modulus on the plane

of isotropy, and Gvh ¼ C2323 ¼ C3131 is the shear modulus

on the plane including the axis of symmetry. The measured

data of moduli in the case of K = 1 (p = 50 kPa) are used

for model calibration.

As shown in Fig. 4, the variations of elastic moduli with

the mean stress under different K values are well predicted

and are consistent with the laboratory measured data. It is

known that the isotropic granular hyperelasticity in Eq. (1)

gives Ke (GeÞ / pm= mþ1ð Þ, where Ke and Ge are, respec-

tively, the elastic bulk and shear moduli of isotropic

materials and p is the mean stress. Similarly, the six

independent components of the elastic modulus tensor

(Eq. (16b)) are also a power function of the mean stress,

but with different powers slightly deviating from

m= mþ 1ð Þ, dependent on the K value. For instance, the

power values of the relationships shown in Fig. 4 vary

from 0.47 to 0.5, with the parameter m = 0.9. Figure 5

shows the effects of horizontal and vertical stresses on the

two constrained moduli. Obviously, the horizontal and

vertical constrained moduli are mainly dependent only on

the horizontal and vertical stresses, respectively. However,

relatively slight variations of the constrained moduli with

another stress component are also well predicted.

As shown in Fig. 5, the anisotropy of the modulus tensor

is also sensitively dependent on the K value. This can also

be interpreted by checking the components of modulus

tensor in different rotated coordinate systems. The modulus

distribution curves can be then determined as a function of

the rotation angle h, as shown in Fig. 6. The results are

well consistent with the measured compressive and shear

Fig. 4 The compressive and shear moduli of Ticino river sand under

different mean stress levels (the solid lines are predicted results and

the markers are measured data from [2]: A ¼ 0:8GPa, B ¼ 8GPa,

a ¼ �0:15, n ¼ 0:5, n2 ¼ 4, f ¼ 20 and m ¼ 0:9)
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wave velocities in different directions [2]. The elliptic or

peanut-shaped shape of the modulus surfaces in Fig. 6a, c

shows the combined effects of inherent and stress-induced

anisotropy. In contrast, the anisotropy shown in Fig. 6b

(K = 1) is mainly attributed to the inherent anisotropy,

since that under isotropic stresses only the isotropy can be

observed if no inherent anisotropy exists. Comparing

Fig. 6b with Fig. 6a, c, it can be inferred that the stress-

induced anisotropy may become dominant for the granular

medium consolidated under K 6¼ 1. However, it should be

noted that for the transversely isotropic granular medium,

the stress-induced anisotropy and the inherent anisotropy

should be coupled with each other. Even for K ¼ 1, the

inherent anisotropy will lead to an anisotropic elastic

deformation, resulting in eet 6¼ 0 which indicates an addi-

tional stress-induced anisotropy described in Eq. (8). Dif-

ferent from Eq. (8), the stress-induced anisotropy is also

usually defined as a function of the third invariant of the

stress tensor. Such a kind of description of stress-induced

anisotropy is equivalent to the one described by the elastic

strain tensor (Eq. 8) only for the case without inherent

anisotropy. Considering the inherent anisotropy,

when K ¼ 1, the former type of stress-induced aniso-

tropy will completely disappear, while the latter one can

still be observed, as discussed above. Noting that at the

particulate scale the particle contact stiffness directly

depends on the overlap between particles, a stress-induced

anisotropy in terms of the third elastic strain invariant may

be more reasonable.

3.2 Effects of anisotropy on strength criterion

For granular solids, there should be a stress state boundary

surface beyond which the stress states are impossible to be

reached. Such a state boundary can be used to define the

strength criterion in the stress space, indicating the ultimate

state of the granular solids. From the energy perspective, it

will be clear that this state boundary corresponds to the

thermodynamic instability of solid materials. For a volume

Fig. 5 Effects of a horizontal and b vertical stresses on the constrained modulus (the dots are measured data [2])

Fig. 6 Elastic moduli calculated in different rotated coordinate systems (h is the angle of which the axes ‘‘1’’ and ‘‘3’’ are rotated around the axis

‘‘2’’; parameters are the same as those used in Fig. 4)
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domain of a solid, denoted as V, the thermodynamic sta-

bility requires [6]

d2S ¼ � 1

T

Z

V

opij
oeekl

deeklde
e
ijdV � 0 ð17Þ

where T is the temperature, S is the entropy and d2S is the

second variation of entropy. As shown in Fig. 2, the

inequality Eq. (17) holds on in the stable elastic region

(SER), while is broken in the instable elastic region (IER)

that can be associated with the ultimate or failure behavior

of granular medium. We can define the state boundary

surface as the boundary between SER and IER, which just

provides the criterion of granular soils. Noting that

Eq. (17) further requires the elastic potential energy den-

sity function xe be convex with respect to the elastic strain

tensor, the state boundary surface just corresponds to the

states at which the isolines of the elastic potential energy

density are changed from being convex to concave, as

illustrated in Fig. 2. In other words, the Hessian matrix

o2xe= oeeijoe
e
kl

� �
, which is also the tangent elastic stiffness

matrix, should be positive definite for the stable elastic

states of granular solids. Noting that eeij only includes six

independent components, the failure surface (or state

boundary) in the stress space can be determined according

to the critical condition of the positive definiteness of the

following matrix:

Hij

� �
¼ o2xe

oXioXj

i; j ¼ 1 to 6ð Þ ð18Þ

where X1 ¼ ee11, X2 ¼ ee22, X3 ¼ ee33, X4 ¼ ee12, X5 ¼ ee23 and
X6 ¼ ee31. Furtherly, the states on the failure line just

indicate that kmin ¼ 0, where kmin is the minimum eigen-

value of Hij

� �
.

First, only considering the stress-induced anisotropy

under triaxial straining conditions with constant strain

Lode angle w, as defined in Sect. 3.1, xe can be reduced to

a function related to the two elastic strain invariants, eev and
ees . The corresponding strength criterion can be then simply

determined by the following relation:

o2xe

oeevoe
e
v

o2xe

oeesoe
e
s

� o2xe

oeevoe
e
s

	 
2

� 0 ð19Þ

which results in

ees
eev

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ 2

b nþ cos 3wð Þ
5
3�6�5

6f
h i

vuut ð20Þ

The state boundary will be reached when Eqs. (19) and

(20) become equalities, and the failure can be expected

when the above two inequalities are violated. Thus,

defining q ¼ oxe=oees and p ¼ oxe=oeev, the strength cri-

terion in the stress space under triaxial conditions can be

expressed as:

q

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ cos 3wð Þ

5
3�6�5

6f
b bþ 2ð Þ

s

ð21Þ

Equation (21) gives the maximum allowable stress ratio

q=p dependent on the strain Lode angle. It indicates that the

energy part defined in Eq. (8) also determines the effects of

stress-induced anisotropy on the strength of granular

medium. It is interesting that the elastic potential reveals

both the state-dependent nonlinear hyperelastic stress–

strain relation and the mechanical instability of granular

medium. This makes the model be capable of giving the

unified understanding and predictions of different proper-

ties of the granular solids behavior, within a minimum

complexity. Figure 7a shows the strength criteria in the

principal stress space determined using Eq. (21). The

Fig. 7 Strength criteria in the normalized principal stress space a only
considering the stress-induced anisotropy and b considering both the

stress-induced and inherent anisotropy. The circles are the measured

data for Camber Cambria River Sand [5]. Parameters not mentioned

used are the same as those used in Fig. 4
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failure surface is changed from a circle to a triangle when

the parameter f increases from 0 to a larger value, indi-

cating the effect of stress-induced anisotropy.

More generally, when considering both the stress-in-

duced and inherent anisotropy under arbitrary state paths,

the states at which the failure is triggered and thus the

strength criterion (i.e., the state boundary) can be deter-

mined by searching the states where kmin ¼ 0 for Hij

� �
,

along different specific stress or strain paths (e.g., the

searching path with a constant strain Lode angle w in the

principal elastic strain space, as shown in Fig. 8). Fig-

ure 7b shows the calculated strength criteria in a specific

principal stress space, with a fixed parameter f and dif-

ferent values of a, the parameter of inherent anisotropy.

The subscript ‘‘1’’ in Figs. 7 and 8 represents the symmetry

axis of transversely isotropic materials, which is just in the

vertical direction for the granular medium formed under

gravity. Figure 7b indicates that the increased inherent

anisotropy parameter a shifts the state boundary to the

direction ‘‘1’’, resulting in more significant strength ani-

sotropy. The triaxial compression strength for the cases in

which the maximum principal stress is located on the

bedding plane, however, seems to be independent on the

value of a.

Figure 7 only shows the strength criteria under the tri-

axial conditions with the three principal stress directions

coincide with the axes of anisotropy, while Fig. 9 shows

the predicted stress–strain relations under more generalized

triaxial compression conditions. h is the angle between the

direction of maximum principal stress (referred to as the

axial direction here) and the symmetry axis of transverse

isotropy. r hð Þ
a and r hð Þ

l are the axial and lateral stresses,

respectively; J2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rij � pdij=3
� �

rij � pdij=3
� �q

is the

second invariant of the deviatoric stress tensor. For the

triaxial loadings with constant r hð Þ
l and increasing r hð Þ

a , the

failure is triggered at the peak state in the stress–strain

relations shown in Fig. 9. On the whole, with the increase

in h, the stiffness is decreased at a low strain level and

increased at a relatively high strain level; however, the

peak strength tends to be decreased. Variations presented

above in the stiffness and failure states of granular medium

are completely attributed to the inherent anisotropy. Such

properties are important for the circumstances where the

directions of principal stresses vary spatially, e.g., in the

slopes.

4 Conclusion

In this paper, the transverse isotropy of granular medium is

studied within the energy perspective. Both the stress-in-

duced and inherent anisotropy can be well described by the

granular hyperelasticity in which a fabric tensor is coupled

to the elastic potential energy density in terms of the elastic

strain invariants. The third elastic strain invariant is

employed to enable the description of the stress-induced

anisotropy. It can be concluded that such an approach

provides a unified considerations on the stress-induced and

inherent anisotropic behavior of the nonlinear elasticity and

its stability. It provides an insight into the physical mech-

anisms underlying the granular soil behavior and couples

the state and fabric-dependent properties of elastic stiffness

and strength criterion with each other. The six independent

constants of the elastic modulus tensor of granular medium

consolidated under different stress levels and consolidation

stress ratios are well predicted using the granular hypere-

lasticity. Furthermore, it is shown that proposed model of

elastic potential, coupled with the fabric tensor, results in a

state region within which the thermodynamic stability is

broken and thus naturally enables the predictions of the

state boundary and the mechanical instability of trans-

versely isotropic granular solids.Fig. 8 Schematic diagram of the determination of failure loci in the

principal elastic strain space

Fig. 9 Effects of principal stress direction on the triaxial compression

behavior of anisotropic granular solids
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From such a thermodynamic perspective, the strength

criterion or the state boundary, which is usually defined in

granular mechanics and should be affected by the stress-

induced and inherent anisotropy, can be quantitatively

determined by searching the states at which the positive

definiteness of the Hessian matrix of the elastic potential

density function is violated. The stress-induced anisotropy

changes the shape of the strength criterion, while the

inherent anisotropy mainly leads to the shifting of the

strength criterion in the stress space. Therefore, the pro-

posed granular hyperelasticity in this study provided a

generalized approach predicting the nonlinear elasticity

and strength criteria of granular medium. It can be

expected that such a hyperelasticity could be useful in the

further modeling of elasto–plastic granular behavior.
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